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Introduction

I Introduced by Koopmans and Beckmann in 1957

I Cited by ≈ 1500

I Among the hardest combinatorial problems

I Real and test instances easily accessible (QAPLIB - A Quadratic
assignment problem Library)

I Instances with N=30 are still unsolved
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Location theory

I Supply Chains

I Logistics

I Production
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Location theory

I Objective: Assign N plants between N given locations in order to
minimize total flows.
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A=


0 3 6 4 2
3 0 2 3 3
6 2 0 3 4
4 3 3 0 1
2 3 4 1 0
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0 10 15 0 7

10 0 5 6 0
15 5 0 4 2
0 6 4 0 5
7 0 2 5 0
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Location theory
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I Optimal solution = 258
I Optimal Permutation=[2 4 5 3 1]

A=


0 3 6 4 2
3 0 2 3 3
6 2 0 3 4
4 3 3 0 1
2 3 4 1 0

 B24531 =


0 6 0 5 10
6 0 5 4 0
0 5 0 2 7
5 4 2 0 15

10 0 7 15 0
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Facility Layout-Real World Examples

I Hospital Layout - German
university hospital, Klinikum
Regensburg 1972.
(Optimality proved in the year
2000)

I Ship Design

I Airport gate Assignment

I Nature Park Layout
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DNA MicroArray Layout

I Microarrays can have up to 1.3 million probes

I Small subregions can be solved as QAPs

I Objective: To reduce the risk of unintended illumination of
probes

AGTCGCACGCGTAGA

ATTTGGAGCCGTCGA

TGTTGATGCGGAGGC

CGTCGCCTCCGAGGT

ACTCGAGGAAGATGT

Sub-region (size N = 25)
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Other applications for QAPs

I Backboard wiring

I Control panel and keyboard layout

I VLSI design

I Computer manufacturing

I Archeology

I Bandwith minimization of a graph

I Economics

I Image processing
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Three Objective Functions

I Koopmanns-Beckmann

minA ·XBXT (1)

I SDP
mintr(AXBXT ) (2)

I DLR
minXA ·BX (3)
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Koopmans Beckmann form

N¼
i=1

N¼
j=1

N¼
k=1

N¼
l=1

aijbkl · xikxjl

N¼
i=1

xij = 1, j = 1, ...,N ;

N¼
j=1

xij = 1, i = 1, ...,N ;

xij ∈ {0,1}, i , j = 1, ...,N ;

I This formulation has N2(N −1)2 bilinear terms.
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tr(AXBXT ) = tr((A⊗B)yyT )

Q= A⊗B=


a11B · · · a1NB

... · · ·
...

aN1B · · · aNNB

 and y= vec(X) =


x11
...

xNN


Semi Definite Programming Relaxation

min
Y,y

tr(Q′Y)

s.t. diag(Y) = y[
1 yT

y Y

]
� 0

I ⊗ is the Kronecker product

I The number of continuous variables in Y is N4 and the number of
binary variables in y is N2
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minXA ·BX

min
N¼
i=1

N¼
j=1

a ′ijb
′
ij

a ′ij =
n¼

k=1

akjxik ∀i , j

b ′ij =
n¼

k=1

bik xkj ∀i , j

A=


0 3 5 9 6
3 0 2 6 9
5 2 0 8 10
9 6 8 0 2
6 9 10 2 0

 B=


0 4 3 7 7
4 0 4 10 4

3 4 0 2 3
7 10 2 0 4
7 4 3 4 0
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minXA ·BX

min
N¼
i=1

N¼
j=1

a ′ijb
′
ij

a ′ij =
n¼

k=1

akjxik ∀i , j

b ′ij =
n¼

k=1

bik xkj ∀i , j

A=


0 3 5 9 6
3 0 2 6 9
5 2 0 8 10
9 6 8 0 2
6 9 10 2 0

 B=


0 4 3 7 7
4 0 4 10 4

3 4 0 2 3
7 10 2 0 4
7 4 3 4 0


a ′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53
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Discrete Linear Reformulation (DLR)

min
n¼

i=1

n¼
j=1

Mi¼
m=1

Bmi zmij

zmij ≤ Aj
¼

k∈Kmi

xkj m = 1, ...,Mi

Mi¼
m=1

zmij = a′ij


∀i , j

Example for one bilinear term a′23b
′
23

a′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53

x13 + x23 + x33 + x43 + x53 = 1

x21 + x22 + x23 + x24 + x25 = 1
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Discrete Linear Reformulation (DLR)

min
n¼

i=1

n¼
j=1

Mi¼
m=1

Bmi zmij

zmij ≤ Aj
¼

k∈Kmi

xkj m = 1, ...,Mi

Mi¼
m=1

zmij = a′ij


∀i , j

Example for one bilinear term a′23b
′
23

a′23 = 5x21 +2x22 +0x23 +8x24 +10x25

b ′23 = 4x13 +0x23 +4x33 +10x43 +4x53

x13 + x23 + x33 + x43 + x53 = 1

x21 + x22 + x23 + x24 + x25 = 1

4z1
23 +10z2

23

z1
23 ≤ 10(x13 + x33 + x53)

z1
23 + z2

23 = a ′23
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Figure 1: Bilinear term a ′23b
′
23 discretized in b ′23 (to the left) and in a ′23 (to the right)

I The size of the MILP problem is dependent on the number of
unique elements per row.

I Tightness of the MILP problem is dependent on the differences
between the elements in each row.
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I The size of the DLR is dependent on the number of unique
elements per row.

I Tightness of the DLR problem is dependent on the differences
between the elements in each row.

I A can be modified to any matrix Ã, where ãij + ãji = aij +aji .

A=



0 1 2 2 3 4 4 5
1 0 1 1 2 3 3 4
2 1 0 2 1 2 2 3
2 1 2 0 1 2 2 3
3 2 1 1 0 1 1 2
4 3 2 2 1 0 2 3
4 3 2 2 1 2 0 1
5 4 3 3 2 3 1 0


Ã=



0 2 2 2 6 6 6 6
0 0 0 0 4 4 4 4
2 2 0 2 2 2 2 2
2 2 2 0 2 2 2 2
0 0 0 0 0 0 0 0
2 2 2 2 2 0 2 2
2 2 2 2 2 2 0 2
4 4 4 4 4 4 0 0
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A=



0 1 2 2 3 4 4 5
1 0 1 1 2 3 3 4
2 1 0 2 1 2 2 3
2 1 2 0 1 2 2 3
3 2 1 1 0 1 1 2
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0 0 0 0 0 0 0 0
2 2 2 2 2 0 2 2
2 2 2 2 2 2 0 2
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Instance Size BKS old LB DLR Time(minutes)
esc32a 32 130 103 130 1964
esc32b 32 168 132 168 3500
esc32c 32 642 616 642 254
esc32d 32 200 191 200 10
esc64a 64 116 98 116 48

Table 1: Solution times when solving the instances esc32a, esc32b, esc32c, esc32d

and esc64a from the QAPLIB to global optimality

I Previously unsolved instances presented in 1990.

I Nug30 (N = 30) solved in 2001 (in 7 days) using 1000
computers in parallel.
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Thank you for listening!

Questions?
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