OSE SEMINAR 2012

THE QUADRATIC ASSIGNMENT PROBLEM

Axel Nyberg

CENTER OF EXCELLENCE IN
OPTIMIZATION AND SYSTEMS ENGINEERING ÅBO AKADEMI UNIVERSITY

ÅBO, NOVEMBER 29, 2012

Introduction

- Introduced by Koopmans and Beckmann in 1957
- Cited by ≈ 1500
- Among the hardest combinatorial problems
- Real and test instances easily accessible (QAPLIB - A Quadratic assignment problem Library)
- Instances with N=30 are still unsolved

Location theory

- Supply Chains
- Logistics
- Production

Location theory

- Objective: Assign N plants between N given locations in order to minimize total flows.

$A=\left[\begin{array}{lllll}0 & 3 & 6 & 4 & 2 \\ 3 & 0 & 2 & 3 & 3 \\ 6 & 2 & 0 & 3 & 4 \\ 4 & 3 & 3 & 0 & 1 \\ 2 & 3 & 4 & 1 & 0\end{array}\right]$

Applications

Location theory

- Optimal solution $=258$
- Optimal Permutation=[2lllll 243131$]$

$$
\mathrm{A}=\left[\begin{array}{ccccc}
0 & 3 & 6 & 4 & 2 \\
3 & 0 & 2 & 3 & 3 \\
6 & 2 & 0 & 3 & 4 \\
4 & 3 & 3 & 0 & 1 \\
2 & 3 & 4 & 1 & 0
\end{array}\right] \quad \mathbf{B}_{24531}=\left[\begin{array}{ccccc}
0 & 6 & 0 & 5 & 10 \\
6 & 0 & 5 & 4 & 0 \\
0 & 5 & 0 & 2 & 7 \\
5 & 4 & 2 & 0 & 15 \\
10 & 0 & 7 & 15
\end{array}\right]
$$

Facility Layout-Real World Examples

- Hospital Layout - German university hospital, Klinikum Regensburg 1972. (Optimality proved in the year 2000)
- Ship Design
- Airport gate Assignment
- Nature Park Layout

DNA MicroArray Layout

- Microarrays can have up to 1.3 million probes
- Small subregions can be solved as QAPs
- Objective: To reduce the risk of unintended illumination of probes

Other applications for QAPs

- Backboard wiring
- Control panel and keyboard layout
- VLSI design
- Computer manufacturing
- Archeology
- Bandwith minimization of a graph
- Economics
- Image processing

Three Objective Functions

- Koopmanns-Beckmann

$$
\begin{equation*}
\min A \cdot X B X^{\top} \tag{1}
\end{equation*}
$$

- SDP

$$
\begin{equation*}
\min \operatorname{tr}\left(A X B X^{\top}\right) \tag{2}
\end{equation*}
$$

- DLR

$$
\begin{equation*}
\min X A \cdot B X \tag{3}
\end{equation*}
$$

Koopmans Beckmann form

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} a_{i j} b_{k l} \cdot x_{i k} x_{j l} \\
& \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& x_{i j} \in\{0,1\}, \quad i, j=1, \ldots, N
\end{aligned}
$$

Koopmans Beckmann form

$$
\begin{aligned}
& \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} a_{i j} b_{k l} \cdot x_{i k} x_{j l} \\
& \sum_{i=1}^{N} x_{i j}=1, \quad j=1, \ldots, N \\
& \sum_{j=1}^{N} x_{i j}=1, \quad i=1, \ldots, N \\
& x_{i j} \in\{0,1\}, \quad i, j=1, \ldots, N
\end{aligned}
$$

- This formulation has $N^{2}(N-1)^{2}$ bilinear terms.

$$
\mathbf{Q}=\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & \cdots & a_{1 N} \mathbf{B} \\
\vdots & \cdots & \vdots \\
a_{N 1} \mathbf{B} & \cdots & a_{N N} \mathbf{B}
\end{array}\right] \text { and } \mathbf{y}=\operatorname{vec}(\mathbf{X})=\left[\begin{array}{c}
x_{11} \\
\vdots \\
x_{N N}
\end{array}\right]
$$

Semi Definite Programming Relaxation

$$
\min _{\mathbf{Y}, \mathbf{y}} \operatorname{tr}\left(\mathbf{Q}^{\prime} \mathbf{Y}\right)
$$

s.t.

$$
\begin{gathered}
\operatorname{diag}(\mathbf{Y})=\mathbf{y} \\
{\left[\begin{array}{cc}
1 & \mathbf{y}^{T} \\
\mathbf{y} & \mathbf{Y}
\end{array}\right] \geq 0}
\end{gathered}
$$

- \otimes is the Kronecker product
\Rightarrow The number of continuous variables in Y is N^{4} and the number of binary variables in y is N^{2}

$\min X A \cdot B X$

$$
\begin{gathered}
\min \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}^{\prime} b_{i j}^{\prime} \\
a_{i j}^{\prime}=\sum_{k=1}^{n} a_{k j} x_{i k} \quad \forall i, j \\
b_{i j}^{\prime}=\sum_{k=1}^{n} b_{i k} x_{k j} \quad \forall i, j \\
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 3 & 5 & 9 & 6 \\
3 & 0 & 2 & 6 & 9 \\
5 & 2 & 0 & 8 & 10 \\
9 & 6 & 8 & 0 & 2 \\
6 & 9 & 10 & 2 & 0
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccccc}
0 & 4 & 3 & 7 & 7 \\
4 & 0 & 4 & 10 & 4 \\
3 & 4 & 0 & 2 & 3 \\
7 & 10 & 2 & 0 & 4 \\
7 & 4 & 3 & 4 & 0
\end{array}\right]
\end{gathered}
$$

$\min X A \cdot B X$

$$
\begin{aligned}
\min \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i j}^{\prime} b_{i j}^{\prime} \\
a_{i j}^{\prime}=\sum_{k=1}^{n} a_{k j} x_{i k} \quad \forall i, j \\
b_{i j}^{\prime}=\sum_{k=1}^{n} b_{i k} x_{k j} \quad \forall i, j
\end{aligned}
$$

$$
A=\left[\begin{array}{ccccc}
0 & 3 & 5 & 9 & 6 \\
3 & 0 & 2 & 6 & 9 \\
5 & 2 & 0 & 8 & 10 \\
9 & 6 & 8 & 0 & 2 \\
6 & 9 & 10 & 2 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
0 & 4 & 3 & 7 & 7 \\
4 & 0 & 4 & 10 & 4 \\
3 & 4 & 0 & 2 & 3 \\
7 & 10 & 2 & 0 & 4 \\
7 & 4 & 3 & 4 & 0
\end{array}\right]
$$

$$
a_{23}^{\prime}=5 x_{21}+2 x_{22}+0 x_{23}+8 x_{24}+10 x_{25}
$$

$$
b_{23}^{\prime}=4 x_{13}+0 x_{23}+4 x_{33}+10 x_{43}+4 x_{53}
$$

THE QAP
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University

Discrete Linear Reformulation (DLR)

$$
\left.\begin{array}{c}
\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{m=1}^{M_{i}} B_{i}^{m} z_{i j}^{m} \\
z_{i j}^{m} \leq \bar{A}_{j} \sum_{k \in K_{i}^{m}} x_{k j} m=1, \ldots, M_{i} \\
\sum_{m=1}^{M_{i}} z_{i j}^{m}=a_{i j}^{\prime}
\end{array}\right\} \forall i, j
$$

Example for one bilinear term $a_{23}^{\prime} b_{23}^{\prime}$

$$
\begin{gathered}
a_{23}^{\prime}=5 x_{21}+2 x_{22}+0 x_{23}+8 x_{24}+10 x_{25} \\
b_{23}^{\prime}=4 x_{13}+0 x_{23}+4 x_{33}+10 x_{43}+4 x_{53} \\
x_{13}+x_{23}+x_{33}+x_{43}+x_{53}=1 \\
x_{21}+x_{22}+x_{23}+x_{24}+x_{25}=1
\end{gathered}
$$

Discrete Linear Reformulation (DLR)

Example for one bilinear term $a_{23}^{\prime} b_{23}^{\prime}$

$$
\begin{gathered}
a_{23}^{\prime}=5 x_{21}+2 x_{22}+0 x_{23}+8 x_{24}+10 x_{25} \\
b_{23}^{\prime}=4 x_{13}+0 x_{23}+4 x_{33}+10 x_{43}+4 x_{53} \\
x_{13}+x_{23}+x_{33}+x_{43}+x_{53}=1 \\
x_{21}+x_{22}+x_{23}+x_{24}+x_{25}=1
\end{gathered}
$$

$$
\begin{gathered}
4 z_{23}^{1}+10 z_{23}^{2} \\
z_{23}^{1} \leq 10\left(x_{13}+x_{33}+x_{53}\right) \\
z_{23}^{1}+z_{23}^{2}=a_{23}^{\prime}
\end{gathered}
$$

Figure 1: Bilinear term $a_{23}^{\prime} b_{23}^{\prime}$ discretized in b_{23}^{\prime} (to the left) and in a_{23}^{\prime} (to the right)

- The size of the MILP problem is dependent on the number of unique elements per row.
- Tightness of the MILP problem is dependent on the differences between the elements in each row.
- The size of the DLR is dependent on the number of unique elements per row.
- Tightness of the DLR problem is dependent on the differences between the elements in each row.
\Rightarrow A can be modified to any matrix $\tilde{\mathrm{A}}$, where $\tilde{a}_{i j}+\tilde{a}_{j i}=a_{i j}+a_{j i}$.
- The size of the DLR is dependent on the number of unique elements per row.
- Tightness of the DLR problem is dependent on the differences between the elements in each row.
\Rightarrow A can be modified to any matrix $\tilde{\mathrm{A}}$, where $\tilde{a}_{i j}+\tilde{a}_{j i}=a_{i j}+a_{j i}$.

$$
A=\left[\begin{array}{llllllll}
0 & 1 & 2 & 2 & 3 & 4 & 4 & 5 \\
1 & 0 & 1 & 1 & 2 & 3 & 3 & 4 \\
2 & 1 & 0 & 2 & 1 & 2 & 2 & 3 \\
2 & 1 & 2 & 0 & 1 & 2 & 2 & 3 \\
3 & 2 & 1 & 1 & 0 & 1 & 1 & 2 \\
4 & 3 & 2 & 2 & 1 & 0 & 2 & 3 \\
4 & 3 & 2 & 2 & 1 & 2 & 0 & 1 \\
5 & 4 & 3 & 3 & 2 & 3 & 1 & 0
\end{array}\right] \quad \tilde{A}=\left[\begin{array}{llllllll}
0 & 2 & 2 & 2 & 6 & 6 & 6 & 6 \\
0 & 0 & 0 & 0 & 4 & 4 & 4 & 4 \\
2 & 2 & 0 & 2 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 0 & 2 & 2 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 & 2 & 0 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 & 2 & 0 & 2 \\
4 & 4 & 4 & 4 & 4 & 4 & 0 & 0
\end{array}\right]
$$

Instance	Size	BKS	old LB	DLR	Time(minutes)
esc32a	32	130	103	130	1964
esc32b	32	168	132	168	3500
esc32c	32	642	616	642	254
esc32d	32	200	191	200	10
esc64a	64	116	98	116	48

Table 1: Solution times when solving the instances esc32a, esc32b, esc32c, esc32d and esc64a from the QAPLIB to global optimality

- Previously unsolved instances presented in 1990.
- Nug30 ($N=30$) solved in 2001 (in 7 days) using 1000 computers in parallel.

A few references

S.A. de Carvalho Jr. and S. Rahmann.

Microarray layout as a quadratic assignment problem.
Proceedings of the German Conference on Bioinformatics (GCB), P-83 of Lecture Notes in Informatic:11-20, 2006.

B. Eschermann and H.-J. Wunderlich.

Optimized synthesis of self-testable finite state machines.
In Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International Symposium, pages 390-397, jun 1990.

Peter Hahn and Miguel Anjos.
Qaplib - a quadratic assignment problem library online.
University of Pennsylvania, School of Engineering and Applied Science, 2002.
T.C. Koopmans and M.J. Beckmann.

Assignment problems and location of economic activities.
Econometrica, 25:53-76, 1957.
Axel Nyberg and Tapio Westerlund.
A new exact discrete linear reformulation of the quadratic assignment problem. European Journal of Operational Research, 220(2):314-319, 2012.

The financial support from the Academy of Finland (Project 127992, Large Scale Mixed-Integer Global Optimization) is gratefully acknowledged.

Thank you for listening!

Questions?

